
INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

10 IJDCST

Optimized Metamorphic Relations for an
automated SDLC

Chillakanti Rambabu 1, M.R.RajaRamesh 2

1Student, Sri Vasavi Engineering College, TadepalliGudem, Andhra Pradesh

2Assosiate Professor, Sri Vasavi Engineering College ,TadepalliGudem, Andhra Pradesh

Abstract: Previously an integrated method for program proving, testing, and debugging is developed using the

concept of metamorphic relations, symbolic analysis and path constraint simplifications. Metamorphic testing

observes that even if the executions do not result in failures, they still bear useful information. That method

extrapolates from the correctness of a program for tested inputs to the correctness of the program for related untested

inputs. Follow-up test cases should be constructed from the original set of test cases with reference to selected

necessary properties of the specified function. Such necessary properties of the function are called metamorphic

relations. Prior approaches use four metamorphic relations to initiate metamorphic testing for the verification of

software output without a complete testing oracle. To increase the frequency of number of test cases we propose to

highlight all the available metamorphic relations applicable to a source code and dynamically apply those that are

most suited and relevant to the code for generating test cases. Identification of constraint expressions that reveal

failures support automatic debugging. The extra metamorphic relation drives the generation and initiation of more

testing procedures into various modules of the prevalent code resulting in a better performance gain.

IndexTerms: Software/program verification, symbolic execution, testing and debugging.

I. INTRODUCTION

The relationship between testing and debugging is an

intimate one. Thorough testing requires an under-

standing not only of program requirements but also

of the program implementation. To understand a pro-

gram's implementation the program's semantics and

syntax must be understood. The tester, often the

author of the program, exploits this understanding to

design tests which are effective in eliciting program

failures. Once the program fails, various debugging

techniques and tools are employed to locate the bug.

In this paper we describe a practical slicing tool for

java language programs.

Fig 1: Bugs and slices interaction

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

11 IJDCST

Dynamic test-generation tools, such as DART, Cute,

and EXE, find failures by executing an application on

concrete input values, and then creating additional

input values by solving symbolic constraints derived

from exercised control flow paths. To date, such

approaches have not been practical in the domain of

Web applications.

The output of a Web application is typically

an HTML page that can be displayed in a browser.

Our goal is to find faults that are manifested as Web

application crashes or as malformed HTML. Some

faults may terminate the application, such as when a

Web application calls an undefined function or reads

a nonexistent file. Previously an integrated method

for program proving, testing, and debugging is

developed using the concept of metamorphic

relations, symbolic analysis and path constraint

simplifications. Metamorphic testing observes that

even if the executions do not result in failures, they

still bear useful information. That method

extrapolates from the correctness of a program for

tested inputs to the correctness of the program for

related untested inputs.

Metamorphic testing observes that even if

the executions do not result in failures, they still bear

useful information. Follow-up test cases should be

constructed from the original set of test cases with

reference to selected necessary properties of the

specified function. Such necessary properties of the

function are called metamorphic relations. Symbolic

analysis and path constraint simplifications along

with Metamorphic testing helps to integrate the three

different stages of SDLC thus enabling an automated

development environment that is both robust and fast.

II. RELATED WORK
A test oracle is a mechanism that reliably decides

whether a test succeeds. For services, as we will

discuss, formal test oracle may be unavailable,

however. The expected behavior of a service that

represents business goods and services changes

according to the environment. Such an expected

behavior is relative to the behaviors of competing

services or other services. Intuitively, it is hard to

define the expected behavior explicitly in the first

place. Tsai et al. (2004), for example, suggest using a

progressive ranking of similar implementations of a

service description to alleviate the test oracle

problem. The behaviors of different implementations

of the same service vary in general. Test results of a

particular group of implementations cannot reliably

be served as the expected behavior of a particular

implementation of the same service on the same test

case. Also, a typical SOA application may comprise

collaborative services of multiple organizations,

knowing all the implementations is impractical.

This paper extends the preliminary version to propose

an online testing approach for testing services. The

main contributions of the preliminary version

include:

a) It proposes to apply the notion of

metamorphic testing to services computing

to alleviate the test oracle problem. It

constructs more test cases to reveal faults

than those ordinarily required when test

oracles are known.

b) It proposes to realize the metamorphic

testing mechanism as a metamorphic service

in services computing that encapsulates a

service under, executes test cases and cross-

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

12 IJDCST

validates their test results. Such realization

integrates seamlessly to the existing SOA

framework. It automates the construction of

follow-up test cases and their test results

checking.

Testing
In software testing, test automation is the use of

special software (separate from the software being

tested) to control the execution of tests and the

comparison of actual outcomes to predicted

outcomes. Test automation can automate some

repetitive but necessary tasks in a formalized testing

process already in place, or add additional testing that

would be difficult to perform manually.

There are two general approaches to test automation:

 Code-driven testing. The public

(usually) interfaces to classes, modules or

libraries are tested with a variety of input

arguments to validate that the results that are

returned are correct.

 Graphical user interface testing. A

testing framework generates user interface

events such as keystrokes and mouse clicks, and

observes the changes that result in the user

interface, to validate that the observable

behavior of the program is correct.

Debugging: Debugging is a methodical process of

finding and reducing the number of bugs, or defects,

in a computer program or a piece of electronic

hardware, thus making it behaves as expected.

Debugging tends to be harder when various

subsystems are tightly coupled, as changes in one

may cause bugs to emerge in another. Many books

have been written about debugging (see

below: Further reading), as it involves numerous

aspects, including interactive debugging, control

flow, integration testing, log files, monitoring

(application, system), memory

dumps, profiling, Statistical Process Control, and

special design tactics to improve detection while

simplifying changes.

Proving
Using this method, program states collected from

executions of concrete test cases are generalized by

means of abstractions. Then, a theorem prover will

check the generalized set of states against a coverage

criterion and against certain safety properties. When

the check is successful, the safety properties are

proved.

The properties of interest, however, are very

different between the two approaches. Yorsh et al.’s

method verifies safety properties such as the absence

of memory leaks and the absence of null pointer

dereference errors. On the other hand, semi-proving

is interested in metamorphic relations, which are

more relevant to logic errors. Logic errors seldom

cause memory abnormalities like memory access

violations, segmentation faults, or memory leaks.

Instead, they produce incorrect outputs. Furthermore,

the safety properties discussed by Yorsh et al. [57]

are at the coding level, but metamorphic relations are

usually identified from the problem domain.

Verifying metamorphic relations and verifying safety

properties, therefore, are complementary to each

other — this has been discussed previously.

Secondly, the objectives of the two methods are

different. Yorsh et al’s method “is oriented towards

finding a proof rather than detecting real errors,” and

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

13 IJDCST

“does not distinguish between a false error and a real

error.”

III.EXISTING SYSTEM

Program proving suffers from the complexity of

the proofs and the problems in automation even for

relatively simple programs. Limitation of program

testing is the oracle problem. An oracle is a

mechanism against which testers can decide whether

the outcome of the execution of a test case is correct.

An ideal oracle can “provide an unerring pass/fail

judgment”. And obtaining such an automated oracle

is a complicated task. Debugging is based on the

novel idea of running the same program on re-

expressed forms of the original input to avoid the

high cost of developing multiple versions in N-

version programming. It was proposed from the

perspective of fault tolerance rather than fault

detection, and since then has only been advocated as

a fault tolerance technique. Consequently, properties

used in data diversity are intrinsically limited to

identity relations. When an identity relation in data

diversity/program checker/self-tester has been

violated, the failed execution can be analyzed

automatically to reveal more information about the

failure. This separate entity approach is both time

consuming and laborious process. So a better and

automated system is required that can address these

issues.

We address the above specified problems by means

of a semi-proving method, which integrates program

proving, testing, and debugging. The cycle is

automated without the need for manual loading of the

program into different tools to attain their respective

objectives. Sophisticated techniques and automated

tools for symbolic analysis and path constraint

simplifications have been developed to facilitate

more effective parallelism and optimization of

programs between the three different stages of

SDLC. Instead of employing any oracle's for

initiating testing we propose to implement

Metamorphic testing. Metamorphic testing is a

technique for the verification of software output

without a complete testing oracle.

The subject program is verified through metamorphic

relations (MR). It is unlikely for a single MR to

detect all possible faults. Therefore, four MRs that

are quite different from one another with a view to

detecting various faults were used here. Finding

good MRs requires knowledge of the problem

domain, understanding of user requirements, as well

as some creativity. These MRs are identified

according to equivalence and nonequivalence

relations among regular expressions. So this kind of

testing facilitates in an automated addressing of all

possible forms of failures. Symbolic analysis and

path constraint simplifications along with

Metamorphic testing helps to integrate the three

different stages of SDLC thus enabling an automated

development environment that is both robust and fast.

IV. PROPOSED METHODOLOGY

Uses an integrated method that covers proving,

testing, and debugging. This automated cycle of

SDLC is obtained by using path constraint

simplifications along with metamorphic testing. Prior

approaches use four metamorphic relations to initiate

Metamorphic testing for the verification of software

output without a complete testing oracle. The system

is constrained with the use of only four metamorphic

relations. This constrained system produces

constrained number of test cases. We propose to

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

14 IJDCST

highlight all the available metamorphic

relations(around 11) applicable to a source code and

dynamically apply those that are most suited and

relevant to the code for generating test cases. The

system is flexible enough to initiate testing

procedures into multiple modules of prevalent code.

End result is an automated development environment

that is more robust and fast.

V. PERFORMANCE ANALYSIS

Our approach is based on the concept of

metamorphic testing (Chen et al., 1998), summarized

below. To facilitate that approach, we must identify

the relations that the algorithms are expected to

exhibit between sets of inputs and sets of outputs.

Once those relations have been determined, we then

analyze the algorithms to decide whether the relations

are necessary properties to indicate correctness

during testing; that is to say, if the implementation

does not exhibit that property, then there is a defect.

If the relation is not a necessary property, it can still

be used for the purpose of validation, that is, whether

the algorithm satisfies the requirement.

5.1 Metamorphic Testing
One popular technique for testing programs without a

test oracle is to use a “pseudo-oracle” (Davis and

Weyuker, 1981), in which multiple implementations

of an algorithm process the same input and the results

are compared; if the results are not the same, then one

or both of the implementations contains a defect. This

is not always feasible, though, since multiple

implementations may not exist, or they may have

been created by the same developers, or by groups of

developers who are prone to making the same types

of mistakes (Knight and Leveson, 1986). However,

even without multiple implementations, often these

applications exhibit properties such that if the input

were modified in a certain way, it should be possible

to predict the new output, given the original output.

This approach is known as metamorphic testing.

Metamorphic testing can be implemented very easily

in practice. The first step is to identify a set of

properties (“metamorphic relations”, or MRs) that

relate multiple pairs of inputs and outputs of the

target program. Then, pairs of source test cases and

their corresponding follow-up test cases are

constructed based on these MRs

In particular, we define the MRs that we anticipate

classification algorithms to exhibit, and define them

more formally as follows.

MR-0: Consistence with affine transformation. The

result should be the same if we apply the same

arbitrary affine transformation function, f(x) = kx +

b, (k 6= 0) to every value x to any subset of features

in the training data set S and the test case ts.

MR-1.1: Permutation of class labels. Assume that

we have a class-label permutation function Perm() to

perform one-to-one mapping between a class label in

the set of labels L to another label in L. If the source

case result is li, applying the permutation function to

the set of corresponding class labels C for the follow-

up case, the result of the follow-up case should be

Perm(li).

MR-1.2: Permutation of the attribute. If we

permute the m attributes of all the samples and the

test data, the result should remain unchanged.

MR-2.1: Addition of uninformative attributes. An

uninformative attribute is one that is equally

associated with each class label. For the source input,

suppose we get the result ct = li for the test case ts. In

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

15 IJDCST

the follow-up input, we add an uninformative

attribute to S and respectively a new attribute in st.

The choice of the actual value to be added here is not

important as this attribute is equally associated with

the class labels. The output of the follow-up test case

should still be li.

MR-2.2: Addition of informative attributes. For the

source input, suppose we get the result ct = li for the

test case ts. In the follow-up input, we add an

informative attribute to S and it’s such that this

attribute is strongly associated with class li and

equally associated with all other classes. The output

of the follow-up test case should still be li.

MR-3.1: Consistence with re-prediction. For the

source input, suppose we get the result ct = li for the

test case ts. In the follow-up input, we can append ts

and ct to the end of S and C respectively. We call the

new training dataset S’ and C’. We take S’, C’ and ts

as the input of the follow-up case, and the output

should still be li.

MR-3.2: Additional training sample. For the source

input, suppose we get the result ct = li for the test

case ts. In the follow-up input, we duplicate all

samples in S and L which have label li. The output of

the follow-up test case should still be li.

MR-4.1: Addition of classes by duplicating

samples. For the source input, suppose we get the

result ct = li for the test case ts. In the follow-up

input, we duplicate all samples in S and C that do not

have label li and concatenate an arbitrary symbol “*”

to the class labels of the duplicated samples. That is,

if the original training set S is associated with class

labels <A, B, C> and li is A, the set of classes in S in

the follow-up input could be <A, B, C, B*, C*>. The

output of the follow-up test case should still be li.

Another derivative of this metamorphic relation is

that duplicating all samples from any number of

classes which do not have label li will not change the

result of the output of the follow-up test case.

MR-4.2: Addition of classes by re-labeling

samples. For the source input, suppose we get the

result ct = li for the test case ts. In the follow-up

input, we relabel some of the samples in S and C

which have label other than li and concatenate an

arbitrary symbol “*” to their class labels. That is, if

the original training set S is associated with class

labels <A, B, B, B, C, C, C> and c0 is A, the set of

classes in S in the follow-up input may become <A,

B, B, B*, C, C*, C*>. The output of the follow-up

test case should still be li.

MR-5.1: Removal of classes. For the source input,

suppose we get the result ct = li for the test case ts. In

the follow-up input, we remove one entire class of

samples in S of which the label is not li. That is, if the

original training set S is associated with class labels

<A, A, B, B, C, C> and li is A, the set of classes in S

in the follow-up input may become <A, A, B, B>.

The output of the follow-up test case should still be

li.

MR-5.2: Removal of samples. For the source input,

suppose we get the result ct = li for the test case ts. In

the follow-up input, we remove part of some of the

samples in S and C of which the label is not li. That

is, if the original training set S is associated with

class labels <A, A, B, B, C, C> and li is A, the set of

classes in S in the follow-up input may become <A,

A, B, C>. The output of the follow-up test case

should still be li.

VI. CONCLUSION
In this paper we will describe the following things:

Program proving suffers from the complexity of the

proofs and the problems in automation even for

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

16 IJDCST

relatively simple programs. Debugging is based on

the novel idea of running the same program on re-

expressed forms of the original input to avoid the

high cost of developing multiple versions in N-

version programming This separate entity approach is

both time consuming and laborious process. So a

better and automated system is required that can

address these issues. Symbolic analysis and path

constraint simplifications along with Metamorphic

testing helps to integrate the three different stages of

SDLC thus enabling an automated development

environment that is both robust and fast. We propose

to highlight all the available metamorphic relations

(around 11) applicable to a source code and

dynamically apply those that are most suited and

relevant to the code for generating test cases. The

system is flexible enough to initiate testing

procedures into multiple modules of prevalent code.

End result is an automated development environment

that is more robust and fast.

VII. REFERENCES
[1] H. Agrawal, J.R. Horgan, S. London, and W. E.

Wong, “Fault localization using execution slices and

dataflow tests,” Proceedings of the 6th International

Symposium on Software Reliability Engineering

(ISSRE ’95), pp. 143– 151. Los Alamitos, CA: IEEE

Computer Society Press, 1995

[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A.

Paradkar, and M.D. Ernst, “Finding bugs in dynamic

web applications,” Proceedings of the 2008 ACM

SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2008), pp. 261–272.

New York, NY: ACM Press, 2008.

[3] M. Blum, M. Luby, and R. Rubinfeld,

“Selftesting / correcting with applications to

numerical problems,” Proceedings of the 22nd

Annual ACM Symposium on Theory of Computing

(STOC ’90), pp. 73–83. New York, NY: ACM Press,

1990. Also Journal of Computer and System

Sciences, vol. 47, no. 3, pp. 549–595, 1993.

[4] H.Y. Chen, T.H. Tse, and T.Y. Chen, “TACCLE:

a methodology for object-oriented software testing at

the class and cluster levels,” ACM Transactions on

Software Engineering and Methodology, vol. 10, no.

1, pp. 56–109, 2001.

[5] T.Y. Chen, J. Feng, and T.H. Tse, “Metamorphic

testing of programs on partial differential equations: a

case study,” Proceedings of the 26th Annual

International Computer Software and Applications

Conference (COMP- SAC 2002), pp. 327–333. Los

Alamitos, CA: IEEE Computer Society Press, 2002.

[6] T.Y. Chen, T.H. Tse, and Z.Q. Zhou, “Semi-

proving: an integrated method based on global

symbolic evaluation and metamorphic testing,”

Proceedings of the 2002 ACM SIGSOFT

International Symposium on Software Testing and

Analysis (ISSTA 2002), ACM SIGSOFT Software

Engineering Notes, vol. 27, no. 4, pp. 191–195, 2002.

[7] H. He and N. Gupta, “Automated debugging

using pathbased weakest preconditions,”

Fundamental Approaches to Software Engineering

(FASE 2004), Lecture Notes in Computer Science,

vol. 2984, pp. 267–280. Berlin, Germany: Springer,

2004.

